
Creating a Database of Assessment

Instruments
Daniel Savoie, Garrison Benson, Lidiya Ilcheva, Dr. Ryan McFall

Abstract

 This project is a component of a larger

project whose goal is to build an online database

of assessments and records of student

performance on these assessments. Our portion

of this task is to process an assessment (e.g. a

homework assignment, quiz or examination) to

identify the questions and load them into this

database. To encourage use of the system, we

need this process to be quick and easy for the

user. Copying and pasting the questions from the

assessments into the database would be easy, but

not quick—hence the need to shift some of the

work away from users.

Our method takes an assessment

instrument in PDF format as input. It extracts

information from this input file, including text

and images, and attempts to separate and

categorize the questions, using white space and

keywords to guide the process. To handle any

questions our method extracted incorrectly or

missed, we developed an application that

provides the capability to edit the questions. We

made it a high priority to design this interface to

be easy to use, consistent with our goal in

creating a quick and easy method from the user’s

perspective.

Our algorithm has been tested on a

sample of 50 assessments from different

educators and institutions. On this sample, we

achieved a success rate of over 86% in correct

question extraction.

Introduction

The database stores questions in XML

format in accordance with the QTI 1.2

specification [3]. Question types include true or

false, multiple choice, fill in the blank, image hot

spot, short answer, and many others, although

those five are primarily what we support. After a

question is extracted and categorized, we

generate XML to represent the question.

For our purposes, the PDF format itself

is a hurdle; it is a format for viewing, not editing.

Yet we chose PDF in the interest of supporting

the widest possible range of student assessment

documents. Because of the capability of Adobe's

PDF format to be generated from numerous

applications running on various operating

systems, it is essentially a universal format,

meeting our goal. And because PDF is nearly

universal, we were able to find open source code

for helping with the uncommon task of

extracting information from PDF files. This wide

range of supported documents, however, is a

problem in and of itself.

Writers of student assessments have

vastly differing ways of laying out their

documents. Multiple choice Biology exams from

the same University but written by different

professors, for example, are very different in

some of the cases we looked at. Some have two

columns, some have images, and some have no

white space between questions. This is only

some of the variability when question type,

subject and institution are held constant, and it

follows that this variability greatly increases

when less closely related assessments are

compared. We indeed found this to be the case

upon examining assessments outside our initial

batch from one University.

Below are two different questions from

different assessments. The questions have a

similar appearance but require very different

responses.

A short answer question with five sub-questions:

A multiple choice question:

 Our collection of documents reveals

several recurring complications. One of these is

how to recognize the start of a question when a

question can begin with integers, letters, roman

numerals, or none of those. Another is the use of

whitespace information. White space can have

many meanings in a document, and changing the

allowed threshold that determines when a

question ends can lead to an endless cycle of

breaking and fixing. In addition, images

extracted from the PDF document need to be

associated with their corresponding questions.

Deciding what should and should not be

considered an indication of question type (e.g.,

multiple underscores in a row could indicate a

fill in the blank question, but the question might

actually be multiple choice) is also a problem.

And of the five question types we are working

with, short answer has the most complications;

short answer questions with multiple sub-

questions are fairly common and can be

represented an endless number of ways.

The user interface used to edit the

output of our recognition algorithm is designed

with potential errors resulting from these

complications and other common errors in mind.

Question type can be changed with a drop-down

box, images can be dragged to and from

questions, and the text can be edited. Choices

can be added or removed from multiple choice

questions, and whole questions can be deleted.

This is not to understate the importance of high

accuracy, however, as high accuracy reduces

editing time.

Background

We performed an extensive search for

related work. Aside from general information on

extracting text from documents, and on natural

language processing, we did not find any past

projects which attempted to solve our problem

specifically. However, Dr Chao and Dr Fan’s

work on extracting layout and content of PDF

documents [1] was a stepping stone in forming

our ideas on a method for extracting the text and

images of the assessment documents. Their

paper describes a general way of extracting the

content of a PDF file (text and images) by using

coordinate information. Their algorithm

separates text, images, and vector graphics and

processes them independently. We process them

simultaneously, and do not keep information

about the layout of the document, such as

indentation and the position of images relative to

the question that uses them, because it is

irrelevant for our purposes.

To extract the content of the assessment

instruments we use a Java library called

Multivalent [2]. It reads PDF, among other file

formats, and provides various tools to

manipulate PDF files; in our work we use

Multivalent to extract images and text from the

PDF files. Multivalent provides classes for

building a document tree of the PDF file, which

contains all of the text and images of the file in

its leaves. The rest of the nodes combine the

leaves in a hierarchy, in which the whole

document is the root of the tree. The Multivalent

library also includes a PDF viewer, which is

embedded in our user interface as a Swing

component.

Algorithm

We first attempted a method that was

more dependent on understanding the text than

on white space. The method began by finding the

start of a question. It would then examine

subsequent text until it could determine the

question type. Once done, a new question object

was created and a polymorphic parse() method

was invoked. The parse() method had the

document passed as a parameter and would begin

processing the question at the location at which

the new question was found. Prompt (the part of

every question that asks the question--for some

question types there is no other text) and image

fields needed to be filled in, along with choice

fields for multiple choice questions. In every

iteration the method would be checking for the

start of another question, indicating that it was

time to return to the main method.

This worked well for multiple choice,

true or false, and fill in the blank questions;

ultimately we had to abandon this method due to

its insufficiency in handling short answer

questions and less traditionally formatted

assessments. Short answer questions can be

formatted a limitless number of ways, so trying

to understand them conflicted with the

understanding of other questions.

The approach we are using first

separates all the questions and then attempts to

infer the question type from their content.

Our work can be separated into two

stages: extracting the content of a PDF

document, and recognizing and classifying the

questions in it. To extract the content of the PDF

files we use a Java library called Multivalent [2]

and its ability to construct a document tree of the

contents of the PDF file. A document tree of a

PDF file consists of leaf nodes, which contain

the content of the document, and parent nodes,

which group the content in the leaf nodes in a

hierarchy. There are three types of leaves: text,

image and graph. In our algorithm we only

extract information from text and image leaves

and ignore the graph leaves, save for their

coordinate information. Each graph leaf contains

a single vector graphics object, which can be a

path, a line, or a point. Multivalent constructs a

separate document tree for each page of the PDF

document. From the tree one can retrieve

information about the position of each separate

text element on the page. We use this coordinate

information to combine the extracted text into

words and lines. As image leaves do not contain

coordinate information, we insert HTML image

tags in the text to help us identify the position of

each image in the flow of the document. Every

time we encounter an image leaf, we create a

new text leaf containing an HTML image tag

with the name of the file in which the image

would be stored, and insert it in the extracted

text. The text nodes which contain the image tags

are assigned coordinate information based on the

coordinate information of the text, which is

immediately before the image. This information

helps us associate images with questions in the

next stage of the algorithm. At this stage we also

combine images which are split horizontally into

several pieces (ranging from 2 to 12 or even 15

pieces), with each piece being in a separate leaf

of the document tree. Figure 1 shows such an

image. This image, which is from a biology

exam, is extracted from the file into 16 separate

pieces (shown in Figure 2). Our algorithm

combines it back to the state it is seen in the

PDF. As we do not possess coordinate

information for images, we combine them based

on proximity and common width. All split

images are combined in our test set with only

one error, where two separate sequential

occurrences of the same image are combined by

mistake. Figure 3 shows an image from a

biology assessment, in which the students are

asked to predict the results of three experiments

on a batch of radish seeds under different

conditions (light and water; light, no water;

water, no light). The seeds will not change in the

presence of light and no water. The instructor

illustrates with fact by using the same image

twice - first to show the state of the seeds before

the experiment, and then to show the state of the

seeds after the experiment. As a result out

algorithm combines the two separate sequential

occurrences of the same image. The correct

placement of the two images in the file is shown

in Figure 4.

Figure 1. This image is originally extracted and broken horizontally into 16 images. Our algorithm

combines it accurately into one image.

Figure 2. Shows the 16 separate pieces of the image in Figure 1 as extracted originally from the PDF

document.

Figure 3. This image is combined by mistake; comprising it are two separate but identical images that

happened to occur sequentially.

Figure 4. This image shows the radish seeds as they are originally in the PDF document. The algorithm

incorrectly combines the two images in the first row.

Much of our effort in this stage of the

project goes into combining the text fragments

and images, which we extract from the leaves of

the document tree, into meaningful blocks. This

includes combining split words, combining

words into lines, and identifying the place of

each image in the flow of the document by

inserting an image tag in the text at the place

where the image appears.

One of the problems that we run into

during this stage is losing emphasis information

(e.g. bold and italics). Emphasis is lost because

of the many different ways it is stored in the

document tree, which Multivalent constructs. It

is usually found in a comment attached to the

text leaf. However, it can be represented as a

different font, or the same font with different

weight, or often, the name of the font is blank,

which causes a loss of font information. Another

problem is that special symbols such as Greek

characters and arrows (in chemical equations)

appear as the question mark character in the

extracted text. Special symbols are lost because

text is extracted in ASCII. In addition,

superscripts and subscripts appear as normal

text.

After the algorithm has extracted the

text and organized it into words and lines, we use

the list of extracted text lines to identify the text

of each question. To do this we go through a

four-step process.

1. We do a rough combining of text

lines into blocks, each of which contains the text

of one question. In this step we keep image tags

separate from the text of questions, because an

image can be a part of multiple questions.

2. We associate the text blocks that

contain image tags with the text blocks

containing a question related to the image.

3. We identify common errors, and

attempt to fix them.

4. We identify each block of text as a

separate question and classify it as one of 5

common question types – multiple choice,

true/false, fill-in-the-blank, short answer, or

image hot spot (a question which asks the

student to identify something in an image).

The first thing to do once the text has

been extracted is to organize it into blocks that

contain one question each. To identify question

content we use several logical cues that indicate

the start of a new question. Our algorithm

considers that a new question starts based on

these events: a new page starts; a new question

label is found (Question labels are in the form of

numbers, followed by some punctuation mark

like a period or a right parenthesis, or a space);

or some pre-determined amount of white space is

found in between two lines of text. Also in this

step of the algorithm we identify any answer

keys that might be present in the file and exclude

them from the list of questions. In this step we

also identify an image tag as starting a new

question. Each image tag normally ends up in a

separate text block, and only occasionally has

some text appended to it, such as a label or an

explanation (e.g. “Figure 6.1”). Leaving image

tags in separate blocks from the rest of the text

allows us to associate a single image with more

than one question in the next step of the

algorithm. At the end of this step, the algorithm

has reorganized the list of text lines into a list of

text blocks, each of which roughly contains

either an image tag, or the text of one question.

Once the text is organized into blocks

we attempt to link each image with the questions

that use it. We observed common features of a

set of 64 real assessments, and found it typical

for images to precede the question(s) to which

they were related. So in this second step of the

algorithm, we link images with the question(s)

immediately following them. In our algorithm

we keep a list of images available for

association. Every time we encounter a question

which indicates that it is related to an image, we

associate the images in the list (usually only one

image) with the question. Words such as “figure”

and “picture” in the text of the question, as well

as sentences starting with the word “which”, are

normally found to be related to an image, and

these are the questions to which we attach an

image from the list. Every time the algorithm

encounters a question that does not contain any

image-associating cues, it clears the list, based

on the assumption that an instructor asks

questions about an image immediately after

showing the image, and once one unrelated

question is asked, no more questions about that

image will follow.

After linking images with the questions

that use them, we're almost ready to identify the

type of each question, which is the final goal of

the extraction algorithm. But in testing the

algorithm we noticed the occurrence of several

common errors. One major error was separating

a question’s text into two text blocks, either

because of an image or because of some amount

of white space which occurred in the middle of

the question's content. This was common with

multiple choice questions in which an image or

white space appeared between the question and

its answer choices. Thus, after linking images

with questions, our algorithm identifies these

errors and fixes them. It identifies split

questions and combines the two parts of the

question into a single block. In addition, in some

assessments a set of answer choices is used for

more than one question. We attempt to associate

these choices with each question. We observed

that instructors tend to format a group of related

questions in the following manner:

For questions 14-16 use the following options to

indicate the correct answer:

 A. (text of choice A)

 B. (text of choice B)

 C. (text of choice C)

 D. (text of choice D)

 E. (text of choice E)

14. (Text of question 14)

15. (Text of question 15)

16. (Text of question 16)

Our algorithm identifies these

occurrences and makes the proper associations.

The output of the algorithm for these three

questions will be:

14. (Text of question 14)

 A. (text of choice A)

 B. (text of choice B)

 C. (text of choice C)

 D. (text of choice D)

 E. (text of choice E)

15. (Text of question 15)

 A. (text of choice A)

 B. (text of choice B)

 C. (text of choice C)

 D. (text of choice D)

 E. (text of choice E)

16. (Text of question 16)

 A. (text of choice A)

 B. (text of choice B)

 C. (text of choice C)

 D. (text of choice D)

 E. (text of choice E)

After going through the extracted text

three times and organizing it into text blocks

which contain one question each, the final step of

the algorithm looks at each text block's content

and attempts to classify it as one of 5 basic

question types. Each question type has common

elements which appear consistently in the

majority of the questions of that type. For

example, multiple choice questions contain

answer choices which are normally labeled with

letters (e.g. “A. B. C. D.”). Fill in the blank

questions contain underscores for representing

the blank space. True or false questions contain

some form or abbreviation of the words true and

false (e.g. “T/F”, “True or false”, “T F “, “T or

F”, etc.). We use these simple cues to identify

the type of each question.

Results

We chose 50 documents from our

collection of 64 by randomly excluding 14

documents. For each document we recorded six

counts: the number of real questions (manually

counted and sometimes ambiguous), the number

of extracted questions, the number of questions

the algorithm got correct, incorrect, and missed,

and the number of extra questions. A question

was considered correctly extracted if its type was

correct and its text was mostly retained Multiple

choice questions with some of the choices

truncated could be correct, along with questions

missing directions. Questions meeting the above

conditions but with extra text or incorrectly

associated images (missing or extra) were also

considered correct. Missed questions were real

questions that were not extracted. Extra

questions were not real questions in the original

document, but were nonetheless extracted by the

algorithm in error. The sum of correct, incorrect,

and missed questions equals the number of real

questions; the sum of correct, incorrect, and extra

questions equals the number of extracted

questions. Using these six numbers, we

calculated four percentages for each exam:

percent correct, extracted, missed and extra.

These four percentages were averaged among the

50 documents, meaning that each document was

weighted equally, regardless of its number of

questions.

We reached a success rate of 86% in

correctly extracting questions. The success rate

has been improved from 75% from the original

version of this method (the abandoned method

had a success rate of 60%). In addition, 91% of

the questions were at least extracted. The two

other averages are the percentages of missed and

extra questions, at 9% and 100%. Because of one

assessment that contained only one question in a

table format and for which sixteen extra

questions were identified, the extra questions

figure is inflated. Many of the other extra

questions come from portions of the assessment

which contain instructions and/or formulas. The

number of extra questions identified could be

significantly reduced by asking the user to

exclude those pages containing no questions.

With the assessments weighted by number of

questions rather than equally, the percentage of

extra questions identified was 50%. (Is this ok,

because of the changed paragraph above?)

Analysis of the results

There are variations in the sample

because of the great variations in the formatting

of each exam. In addition, some exams contain

questions that we could not classify or extract

reliably, such as “Fill in the table”. There are a

few problems likely responsible for these results,

the major one being vector graphics not being

accounted for. The problem with vector graphics

objects such as tables, and graphs, is that the text

which they contain appears in separate leaves in

the document tree. This makes restoring the

vector graph a difficult task, one that often

produces inaccurate results. The algorithm we

wrote to handle these often stores the text of a

nearby question in the vector graphics objects.

The other questions, which are not extracted,

came largely from cases we could not handle,

such as tables. Questions for which it was

difficult even for a human to properly decipher

(e.g. a short answer question with several

vaguely related or unrelated parts) are also

commonly missed. For well-formatted consistent

exams, the algorithm is able to extract all of the

questions; it extracts all questions for 50% of the

files in the sample. Another unresolved issue is

the extraction of instructions as questions, which

results in many extra questions for some exams;

the percentage of extra questions closely

resembles the ratio of instructions to questions in

the assessment instrument. This problem could

be alleviated by allowing the user to exclude

certain pages of the document from the

extraction process (instructions tend to appear on

the first and last pages of an exam). What would

further increase accuracy would be to research

more in depth the use of white space as a means

for separating questions. By changing the

amount of white space, which is a criterion for

separating questions, one can vary the outcome

of the algorithm; but in general increasing the

threshold white space dramatically decreases the

number of extra questions, while it decreases the

accuracy of extraction of true questions.

The first version of the algorithm recognized

75% of the questions. Its accuracy was gradually

improved mainly by attempting to link images to

questions (which contributed to recognizing the

question type correctly) as well as attempting to

merge parts of the same question, or split a text

block in two in the cases when it contained more

than one question (which contributed to

extracting more questions accurately).

User interface

Because of the algorithm's inaccuracy,

it was necessary to create a tool through which

an ordinary, everyday user could correct

mistakes made in question extraction. In order to

ensure user-friendliness, we designed it

according to the Principle of Least

Astonishment, which states that the best option is

that which is least surprising to the user. In other

words, it is best to cater to the user’s

expectations as much as possible. Some design

problems were solved by simply asking users

how they would expect the program to behave.

So that a new user wouldn't have to learn the

program from scratch, we borrowed many

interface elements from existing applications.

For instance, the toolbar and menu bar are

purposefully designed to be very similar to those

in Microsoft Office. This way, the user's prior

experience can provide a great deal of the

necessary knowledge.

In order to catch design flaws early on,

the interface was designed in the form of paper

mock-ups and tested with actual users before

implementation began. Participants were given a

series of tasks to perform and were asked what

they would do (i.e. where they would click) in

each situation. Eight users were tested in total –

four were novice or average computer users, and

four were advanced computer users. In most

cases, the advanced computer users had very

little trouble understanding the design, while the

less experienced users stumbled on some of the

more ambiguous elements. After testing, the

design was critiqued and revised as necessary,

based on user responses. This process helped us

identify and solve a number of design problems.

The final mockup for the interface

design, shown above, is broken down into three

panels: one for the extracted questions, one for

the imported PDF document, and one for any

images that were found in the PDF. All three are

surrounded by a dark gray background (intended

to mimic Microsoft Office products such as

Word or PowerPoint), which subtly suggests to

the user where the interface ends and the editable

data begins.

The extracted questions pane, which

takes up the majority of the window, displays the

questions that the parser has identified. It is

designed to present the user with all the

information they need to see a mistake, so they

can quickly scan the results without having to

click anything. When a user does identify a

mistake the parser has made, he/she can click the

edit button (pencil icon) to put the question in

“edit mode”. In the above mockup, item 2 is in

edit mode while items 1, 3, and 4 are in view

mode.

The original document pane displays

the imported PDF file. When a user selects a

question in the extracted questions pane, the

corresponding text is highlighted in the original

document panel. This helps the user understand

where many of the parser’s mistakes come from

– incorrectly separating the questions. The user

can fix this mistake by clicking “Choose

question from original” (next to a question in

edit mode) and selecting the correct text.

The image pane (only visible after the

user has clicked the image button in the toolbar)

displays all of the images that were extracted

from the imported PDF. Users can drag and drop

images to the appropriate questions or choices.

In addition, if an image was not extracted

correctly (a common problem for tables and

graphs), the user can drag a box around a section

of the PDF and add its contents to the image

pane.

Conclusion and Future Work

In this paper we have described a

method for importing questions from assessment

instruments into a database. Our algorithm

achieved a success rate of over 86% with correct

question extraction. Drawbacks to our method

include not extracting special symbols,

extracting superscripts and subscripts as normal

text, and the high number of extra questions

which come from instructions. Future work on

this project should be focused on reducing the

number of extra questions. This can be achieved

by allowing the user to exclude certain pages

from the extraction process as well as by

experimenting with the white space threshold

criteria for separating questions. The accuracy of

the extracted text could be improved by

developing a method for extracting vector

graphics objects, such as graphs and diagrams, as

well as by extracting special characters. Another

are in which the method can be improved is

recognizing composite question types and

extracting more uncommon or difficult question

types, such as fill-in-the-table and matching. In

terms of improving the accuracy of the extracted

text, work can be done to extract superscripts and

subscripts correctly, as well as to extract special

symbols.

Many features of the user interface have

yet to be implemented, including text formatting

options, special characters, question and choice

re-ordering, options to designate correct answers,

and the tools for interacting with the parser. In

addition, it requires polishing. In particular, the

visuals need to be improved to match or exceed

the aesthetic appeal of the mockups. When these

features are implemented, further user testing

should occur. It is likely that many changes will

need to be made to how the user interacts with

the parser and the PDF document, to engineer a

more efficient work flow.

References:

[1] Chao, H., Fan, J., “Layout and Content Extraction for PDF Documents”. In proceeding of IAPR Int.

workshop on Document Analysis Systems, 2004

[2] Phelps, T. A. and Wilensky, R. 2001. “The multivalent browser: a platform for new ideas”. In

Proceedings of the 2001 ACM Symposium on Document Engineering (Atlanta, Georgia, USA, November

09 - 10, 2001). DocEng '01. ACM Press, New York, NY, 58-67

[3] IMS Question & Test Interoperability: ASI Best Practice & Implementation Guide Date. (2002).

Retrieved August 2, 2007 from IMS Global Learning Consortium Web site:

http://www.imsglobal.org/question/qtiv1p2/imsqti_asi_bestv1p2.html

