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Abstract  

 

 This project is a component of a larger 

project whose goal is to build an online database 

of assessments and records of student 

performance on these assessments.  Our portion 

of this task is to process an assessment (e.g. a 

homework assignment, quiz or examination) to 

identify the questions and load them into this 

database.  To encourage use of the system, we 

need this process to be quick and easy for the 

user. Copying and pasting the questions from the 

assessments into the database would be easy, but 

not quick—hence the need to shift some of the 

work away from users.  

Our method takes an assessment 

instrument in PDF format as input. It extracts 

information from this input file, including text 

and images, and attempts to separate and 

categorize the questions, using white space and 

keywords to guide the process. To handle any 

questions our method extracted incorrectly or 

missed, we developed an application that 

provides the capability to edit the questions. We 

made it a high priority to design this interface to 

be easy to use, consistent with our goal in 

creating a quick and easy method from the user’s 

perspective.  

Our algorithm has been tested on a 

sample of 50 assessments from different 

educators and institutions.  On this sample, we 

achieved a success rate of over 86% in correct 

question extraction.  

 

 

 

 

 

 

 

 

 

 

 

Introduction  

 

The database stores questions in XML 

format in accordance with the QTI 1.2 

specification [3]. Question types include true or 

false, multiple choice, fill in the blank, image hot 

spot, short answer, and many others, although 

those five are primarily what we support. After a 

question is extracted and categorized, we 

generate XML to represent the question.  

For our purposes, the PDF format itself 

is a hurdle; it is a format for viewing, not editing. 

Yet we chose PDF in the interest of supporting 

the widest possible range of student assessment 

documents. Because of the capability of Adobe's 

PDF format to be generated from numerous 

applications running on various operating 

systems, it is essentially a universal format, 

meeting our goal. And because PDF is nearly 

universal, we were able to find open source code 

for helping with the uncommon task of 

extracting information from PDF files. This wide 

range of supported documents, however, is a 

problem in and of itself.  

Writers of student assessments have 

vastly differing ways of laying out their 

documents. Multiple choice Biology exams from 

the same University but written by different 

professors, for example, are very different in 

some of the cases we looked at. Some have two 

columns, some have images, and some have no 

white space between questions. This is only 

some of the variability when question type, 

subject and institution are held constant, and it 

follows that this variability greatly increases 

when less closely related assessments are 

compared. We indeed found this to be the case 

upon examining assessments outside our initial 

batch from one University. 

Below are two different questions from 

different assessments. The questions have a 

similar appearance but require very different 

responses. 

 

 

 

 

 



 

 

 

 

A short answer question with five sub-questions: 

 
 

A multiple choice question: 

 
 

 

 Our collection of documents reveals 

several recurring complications. One of these is 

how to recognize the start of a question when a 

question can begin with integers, letters, roman 

numerals, or none of those. Another is the use of 

whitespace information. White space can have 

many meanings in a document, and changing the 

allowed threshold that determines when a 

question ends can lead to an endless cycle of 

breaking and fixing. In addition, images 

extracted from the PDF document need to be 

associated with their corresponding questions. 

Deciding what should and should not be 

considered an indication of question type (e.g., 

multiple underscores in a row could indicate a 

fill in the blank question, but the question might 

actually be multiple choice) is also a problem. 

And of the five question types we are working 

with, short answer has the most complications; 

short answer questions with multiple sub-

questions are fairly common and can be 

represented an endless number of ways. 

The user interface used to edit the 

output of our recognition algorithm is designed 

with potential errors resulting from these 

complications and other common errors in mind. 

Question type can be changed with a drop-down 

box, images can be dragged to and from 

questions, and the text can be edited. Choices 

can be added or removed from multiple choice 

questions, and whole questions can be deleted. 

This is not to understate the importance of high 

accuracy, however, as high accuracy reduces 

editing time.  

 

Background 

 

We performed an extensive search for 

related work. Aside from general information on 

extracting text from documents, and on natural 

language processing, we did not find any past 

projects which attempted to solve our problem 

specifically. However, Dr Chao and Dr Fan’s 

work on extracting layout and content of PDF 

documents [1] was a stepping stone in forming 

our ideas on a method for extracting the text and 

images of the assessment documents.  Their 

paper describes a general way of extracting the 

content of a PDF file (text and images) by using 

coordinate information. Their algorithm 



separates text, images, and vector graphics and 

processes them independently. We process them 

simultaneously, and do not keep information 

about the layout of the document, such as 

indentation and the position of images relative to 

the question that uses them, because it is 

irrelevant for our purposes. 

To extract the content of the assessment 

instruments we use a Java library called 

Multivalent [2]. It reads PDF, among other file 

formats, and provides various tools to 

manipulate PDF files; in our work we use 

Multivalent to extract images and text from the 

PDF files. Multivalent provides classes for 

building a document tree of the PDF file, which 

contains all of the text and images of the file in 

its leaves. The rest of the nodes combine the 

leaves in a hierarchy, in which the whole 

document is the root of the tree. The Multivalent 

library also includes a PDF viewer, which is 

embedded in our user interface as a Swing 

component.  

 

   

Algorithm  
 

We first attempted a method that was 

more dependent on understanding the text than 

on white space. The method began by finding the 

start of a question. It would then examine 

subsequent text until it could determine the 

question type. Once done, a new question object 

was created and a polymorphic parse() method 

was invoked. The parse() method had the 

document passed as a parameter and would begin 

processing the question at the location at which 

the new question was found. Prompt (the part of 

every question that asks the question--for some 

question types there is no other text) and image 

fields needed to be filled in, along with choice 

fields for multiple choice questions. In every 

iteration the method would be checking for the 

start of another question, indicating that it was 

time to return to the main method.  

This worked well for multiple choice, 

true or false, and fill in the blank questions; 

ultimately we had to abandon this method due to 

its insufficiency in handling short answer 

questions and less traditionally formatted 

assessments. Short answer questions can be 

formatted a limitless number of ways, so trying 

to understand them conflicted with the 

understanding of other questions.  

The approach we are using first 

separates all the questions and then attempts to 

infer the question type from their content.  

Our work can be separated into two 

stages: extracting the content of a PDF 

document, and recognizing and classifying the 

questions in it. To extract the content of the PDF 

files we use a Java library called Multivalent [2] 

and its ability to construct a document tree of the 

contents of the PDF file. A document tree of a 

PDF file consists of leaf nodes, which contain 

the content of the document, and parent nodes, 

which group the content in the leaf nodes in a 

hierarchy. There are three types of leaves: text, 

image and graph. In our algorithm we only 

extract information from text and image leaves 

and ignore the graph leaves, save for their 

coordinate information. Each graph leaf contains 

a single vector graphics object, which can be a 

path, a line, or a point. Multivalent constructs a 

separate document tree for each page of the PDF 

document. From the tree one can retrieve 

information about the position of each separate 

text element on the page. We use this coordinate 

information to combine the extracted text into 

words and lines. As image leaves do not contain 

coordinate information, we insert HTML image 

tags in the text to help us identify the position of 

each image in the flow of the document.  Every 

time we encounter an image leaf, we create a 

new text leaf containing an HTML image tag 

with the name of the file in which the image 

would be stored, and insert it in the extracted 

text. The text nodes which contain the image tags 

are assigned coordinate information based on the 

coordinate information of the text, which is 

immediately before the image. This information 

helps us associate images with questions in the 

next stage of the algorithm. At this stage we also 

combine images which are split horizontally into 

several pieces (ranging from 2 to 12 or even 15 

pieces), with each piece being in a separate leaf 

of the document tree. Figure 1 shows such an 

image. This image, which is from a biology 

exam, is extracted from the file into 16 separate 

pieces (shown in Figure 2). Our algorithm 

combines it back to the state it is seen in the 

PDF. As we do not possess coordinate 

information for images, we combine them based 

on proximity and common width. All split 

images are combined in our test set with only 

one error, where two separate sequential 

occurrences of the same image are combined by 

mistake. Figure 3 shows an image from a 

biology assessment, in which the students are 

asked to predict the results of three experiments 

on a batch of radish seeds under different 

conditions (light and water; light, no water; 

water, no light). The seeds will not change in the 



presence of light and no water. The instructor 

illustrates with fact by using the same image 

twice - first to show the state of the seeds before 

the experiment, and then to show the state of the 

seeds after the experiment. As a result out 

algorithm combines the two separate sequential 

occurrences of the same image. The correct 

placement of the two images in the file is shown 

in Figure 4.  

 

 

 
Figure 1. This image is originally extracted and broken horizontally into 16 images. Our algorithm 

combines it accurately into one image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Shows the 16 separate pieces of the image in Figure 1 as extracted originally from the PDF 

document. 

 

 
Figure 3. This image is combined by mistake; comprising it are two separate but identical images that 

happened to occur sequentially. 



 
Figure 4. This image shows the radish seeds as they are originally in the PDF document. The algorithm 

incorrectly combines the two images in the first row. 

 

Much of our effort in this stage of the 

project goes into combining the text fragments 

and images, which we extract from the leaves of 

the document tree, into meaningful blocks.  This 

includes combining split words, combining 

words into lines, and identifying the place of 

each image in the flow of the document by 

inserting an image tag in the text at the place 

where the image appears. 

One of the problems that we run into 

during this stage is losing emphasis information 

(e.g. bold and italics). Emphasis is lost because 

of the many different ways it is stored in the 

document tree, which Multivalent constructs. It 

is usually found in a comment attached to the 

text leaf. However, it can be represented as a 

different font, or the same font with different 

weight, or often, the name of the font is blank, 

which causes a loss of font information. Another 

problem is that special symbols such as Greek 

characters and arrows (in chemical equations) 

appear as the question mark character in the 

extracted text. Special symbols are lost because 

text is extracted in ASCII. In addition, 

superscripts and subscripts appear as normal 

text. 

After the algorithm has extracted the 

text and organized it into words and lines, we use 

the list of extracted text lines to identify the text 

of each question. To do this we go through a 

four-step process. 

1. We do a rough combining of text 

lines into blocks, each of which contains the text 

of one question. In this step we keep image tags 

separate from the text of questions, because an 

image can be a part of multiple questions. 

2. We associate the text blocks that 

contain image tags with the text blocks 

containing a question related to the image. 

3. We identify common errors, and 

attempt to fix them. 

4. We identify each block of text as a 

separate question and classify it as one of 5 

common question types – multiple choice, 

true/false, fill-in-the-blank, short answer, or 

image hot spot (a question which asks the 

student to identify something in an image).  

The first thing to do once the text has 

been extracted is to organize it into blocks that 

contain one question each. To identify question 

content we use several logical cues that indicate 

the start of a new question. Our algorithm 

considers that a new question starts based on 

these events: a new page starts; a new question 

label is found (Question labels are in the form of 

numbers, followed by some punctuation mark 

like a period or a right parenthesis, or a space); 

or some pre-determined amount of white space is 

found in between two lines of text. Also in this 

step of the algorithm we identify any answer 

keys that might be present in the file and exclude 

them from the list of questions. In this step we 

also identify an image tag as starting a new 

question. Each image tag normally ends up in a 

separate text block, and only occasionally has 

some text appended to it, such as a label or an 



explanation (e.g. “Figure 6.1”). Leaving image 

tags in separate blocks from the rest of the text 

allows us to associate a single image with more 

than one question in the next step of the 

algorithm.  At the end of this step, the algorithm 

has reorganized the list of text lines into a list of 

text blocks, each of which roughly contains 

either an image tag, or the text of one question.  

Once the text is organized into blocks 

we attempt to link each image with the questions 

that use it. We observed common features of a 

set of 64 real assessments, and found it typical 

for images to precede the question(s) to which 

they were related. So in this second step of the 

algorithm, we link images with the question(s) 

immediately following them. In our algorithm 

we keep a list of images available for 

association. Every time we encounter a question 

which indicates that it is related to an image, we 

associate the images in the list (usually only one 

image) with the question. Words such as “figure” 

and “picture” in the text of the question, as well 

as sentences starting with the word “which”, are 

normally found to be related to an image, and 

these are the questions to which we attach an 

image from the list. Every time the algorithm 

encounters a question that does not contain any 

image-associating cues, it clears the list, based 

on the assumption that an instructor asks 

questions about an image immediately after 

showing the image, and once one unrelated 

question is asked, no more questions about that 

image will follow.  

After linking images with the questions 

that use them, we're almost ready to identify the 

type of each question, which is the final goal of 

the extraction algorithm. But in testing the 

algorithm we noticed the occurrence of several 

common errors. One major error was separating 

a question’s text into two text blocks, either 

because of an image or because of some amount 

of white space which occurred in the middle of 

the question's content. This was common with 

multiple choice questions in which an image or 

white space appeared between the question and 

its answer choices. Thus, after linking images 

with questions, our algorithm identifies these 

errors and fixes them.  It identifies split 

questions and combines the two parts of the 

question into a single block. In addition, in some 

assessments a set of answer choices is used for 

more than one question. We attempt to associate 

these choices with each question. We observed 

that instructors tend to format a group of related 

questions in the following manner:  

 

For questions 14-16 use the following options to 

indicate the correct answer:  

            A. (text of choice A)  

            B. (text of choice B)  

            C. (text of choice C)  

            D. (text of choice D)  

            E. (text of choice E)  

   

14. (Text of question 14)  

15. (Text of question 15)  

16. (Text of question 16)  

 

Our algorithm identifies these 

occurrences and makes the proper associations. 

The output of the algorithm for these three 

questions will be:  

 

14. (Text of question 14)  

            A. (text of choice A)  

            B. (text of choice B)  

            C. (text of choice C)  

            D. (text of choice D)  

            E. (text of choice E)  

 

15. (Text of question 15)  

            A. (text of choice A)  

            B. (text of choice B)  

            C. (text of choice C)  

            D. (text of choice D)  

            E. (text of choice E)  

 

16. (Text of question 16) 

            A. (text of choice A)  

            B. (text of choice B)  

            C. (text of choice C)  

            D. (text of choice D)  

            E. (text of choice E)  

 

After going through the extracted text 

three times and organizing it into text blocks 

which contain one question each, the final step of 

the algorithm looks at each text block's content 

and attempts to classify it as one of 5 basic 

question types. Each question type has common 

elements which appear consistently in the 

majority of the questions of that type. For 

example, multiple choice questions contain 

answer choices which are normally labeled with 

letters (e.g. “A. B. C. D.”). Fill in the blank 

questions contain underscores for representing 

the blank space. True or false questions contain 

some form or abbreviation of the words true and 

false (e.g. “T/F”, “True or false”, “T F “, “T or 

F”, etc.). We use these simple cues to identify 

the type of each question.  

   



Results  

              

We chose 50 documents from our 

collection of 64 by randomly excluding 14 

documents. For each document we recorded six 

counts: the number of real questions (manually 

counted and sometimes ambiguous), the number 

of extracted questions, the number of questions 

the algorithm got correct, incorrect, and missed, 

and the number of extra questions. A question 

was considered correctly extracted if its type was 

correct and its text was mostly retained Multiple 

choice questions with some of the choices 

truncated could be correct, along with questions 

missing directions. Questions meeting the above 

conditions but with extra text or incorrectly 

associated images (missing or extra) were also 

considered correct. Missed questions were real 

questions that were not extracted. Extra 

questions were not real questions in the original 

document, but were nonetheless extracted by the 

algorithm in error. The sum of correct, incorrect, 

and missed questions equals the number of real 

questions; the sum of correct, incorrect, and extra 

questions equals the number of extracted 

questions. Using these six numbers, we 

calculated four percentages for each exam: 

percent correct, extracted, missed and extra. 

These four percentages were averaged among the 

50 documents, meaning that each document was 

weighted equally, regardless of its number of 

questions.  

We reached a success rate of 86% in 

correctly extracting questions. The success rate 

has been improved from 75% from the original 

version of this method (the abandoned method 

had a success rate of 60%). In addition, 91% of 

the questions were at least extracted. The two 

other averages are the percentages of missed and 

extra questions, at 9% and 100%. Because of one 

assessment that contained only one question in a 

table format and for which sixteen extra 

questions were identified, the extra questions 

figure is inflated. Many of the other extra 

questions come from portions of the assessment 

which contain instructions and/or formulas.  The 

number of extra questions identified could be 

significantly reduced by asking the user to 

exclude those pages containing no questions. 

With the assessments weighted by number of 

questions rather than equally, the percentage of 

extra questions identified was 50%. (Is this ok, 

because of the changed paragraph above?)  

 

 

 

Analysis of the results 

 

There are variations in the sample 

because of the great variations in the formatting 

of each exam. In addition, some exams contain 

questions that we could not classify or extract 

reliably, such as “Fill in the table”. There are a 

few problems likely responsible for these results, 

the major one being vector graphics not being 

accounted for. The problem with vector graphics 

objects such as tables, and graphs, is that the text 

which they contain appears in separate leaves in 

the document tree. This makes restoring the 

vector graph a difficult task, one that often 

produces inaccurate results. The algorithm we 

wrote to handle these often stores the text of a 

nearby question in the vector graphics objects. 

The other questions, which are not extracted, 

came largely from cases we could not handle, 

such as tables. Questions for which it was 

difficult even for a human to properly decipher 

(e.g. a short answer question with several 

vaguely related or unrelated parts) are also 

commonly missed. For well-formatted consistent 

exams, the algorithm is able to extract all of the 

questions; it extracts all questions for 50% of the 

files in the sample. Another unresolved issue is 

the extraction of instructions as questions, which 

results in many extra questions for some exams; 

the percentage of extra questions closely 

resembles the ratio of instructions to questions in 

the assessment instrument. This problem could 

be alleviated by allowing the user to exclude 

certain pages of the document from the 

extraction process (instructions tend to appear on 

the first and last pages of an exam). What would 

further increase accuracy would be to research 

more in depth the use of white space as a means 

for separating questions. By changing the 

amount of white space, which is a criterion for 

separating questions, one can vary the outcome 

of the algorithm; but in general increasing the 

threshold white space dramatically decreases the 

number of extra questions, while it decreases the 

accuracy of extraction of true questions. 

The first version of the algorithm recognized 

75% of the questions. Its accuracy was gradually 

improved mainly by attempting to link images to 

questions (which contributed to recognizing the 

question type correctly) as well as attempting to 

merge parts of the same question, or split a text 

block in two in the cases when it contained more 

than one question (which contributed to 

extracting more questions accurately). 

 

 



User interface 

 

Because of the algorithm's inaccuracy, 

it was necessary to create a tool through which 

an ordinary, everyday user could correct 

mistakes made in question extraction. In order to 

ensure user-friendliness, we designed it 

according to the Principle of Least 

Astonishment, which states that the best option is 

that which is least surprising to the user. In other 

words, it is best to cater to the user’s 

expectations as much as possible. Some design 

problems were solved by simply asking users 

how they would expect the program to behave. 

So that a new user wouldn't have to learn the 

program from scratch, we borrowed many 

interface elements from existing applications. 

For instance, the toolbar and menu bar are 

purposefully designed to be very similar to those 

in Microsoft Office. This way, the user's prior 

experience can provide a great deal of the 

necessary knowledge. 

In order to catch design flaws early on, 

the interface was designed in the form of paper 

mock-ups and tested with actual users before 

implementation began. Participants were given a 

series of tasks to perform and were asked what 

they would do (i.e. where they would click) in 

each situation. Eight users were tested in total – 

four were novice or average computer users, and 

four were advanced computer users. In most 

cases, the advanced computer users had very 

little trouble understanding the design, while the 

less experienced users stumbled on some of the 

more ambiguous elements. After testing, the 

design was critiqued and revised as necessary, 

based on user responses. This process helped us 

identify and solve a number of design problems. 

 

 
 

 



The final mockup for the interface 

design, shown above, is broken down into three 

panels: one for the extracted questions, one for 

the imported PDF document, and one for any 

images that were found in the PDF. All three are 

surrounded by a dark gray background (intended 

to mimic Microsoft Office products such as 

Word or PowerPoint), which subtly suggests to 

the user where the interface ends and the editable 

data begins.  

The extracted questions pane, which 

takes up the majority of the window, displays the 

questions that the parser has identified. It is 

designed to present the user with all the 

information they need to see a mistake, so they 

can quickly scan the results without having to 

click anything. When a user does identify a 

mistake the parser has made, he/she can click the 

edit button (pencil icon) to put the question in 

“edit mode”. In the above mockup, item 2 is in 

edit mode while items 1, 3, and 4 are in view 

mode. 

The original document pane displays 

the imported PDF file. When a user selects a 

question in the extracted questions pane, the 

corresponding text is highlighted in the original 

document panel. This helps the user understand 

where many of the parser’s mistakes come from 

– incorrectly separating the questions. The user 

can fix this mistake by clicking “Choose 

question from original” (next to a question in 

edit mode) and selecting the correct text.  

The image pane (only visible after the 

user has clicked the image button in the toolbar) 

displays all of the images that were extracted 

from the imported PDF. Users can drag and drop 

images to the appropriate questions or choices. 

In addition, if an image was not extracted 

correctly (a common problem for tables and 

graphs), the user can drag a box around a section 

of the PDF and add its contents to the image 

pane.  

 

 

 

Conclusion and Future Work 

 
In this paper we have described a 

method for importing questions from assessment 

instruments into a database. Our algorithm 

achieved a success rate of over 86% with correct 

question extraction. Drawbacks to our method 

include not extracting special symbols, 

extracting superscripts and subscripts as normal 

text, and the high number of extra questions 

which come from instructions. Future work on 

this project should be focused on reducing the 

number of extra questions. This can be achieved 

by allowing the user to exclude certain pages 

from the extraction process as well as by 

experimenting with the white space threshold 

criteria for separating questions. The accuracy of 

the extracted text could be improved by 

developing a method for extracting vector 

graphics objects, such as graphs and diagrams, as 

well as by extracting special characters. Another 

are in which the method can be improved is 

recognizing composite question types and 

extracting more uncommon or difficult question 

types, such as fill-in-the-table and matching. In 

terms of improving the accuracy of the extracted 

text, work can be done to extract superscripts and 

subscripts correctly, as well as to extract special 

symbols. 

Many features of the user interface have 

yet to be implemented, including text formatting 

options, special characters, question and choice 

re-ordering, options to designate correct answers, 

and the tools for interacting with the parser. In 

addition, it requires polishing. In particular, the 

visuals need to be improved to match or exceed 

the aesthetic appeal of the mockups. When these 

features are implemented, further user testing 

should occur. It is likely that many changes will 

need to be made to how the user interacts with 

the parser and the PDF document, to engineer a 

more efficient work flow. 
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